130 research outputs found

    One millimeter continuum observations of extragalactic thermal sources

    Get PDF
    The results of 1 mm observations of extragalactic thermal sources are reported. The methods of making 1 mm observations are described. The instrumentation used to make the observation is described

    A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    Get PDF
    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers

    Abundances in the planetary nebula NGC 6210

    Get PDF
    The spectra of the planetary nebula NGC6210 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope and the Infrared Space Observatory. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the mid-infrared lines, which are insensitive to electron temperature, are used as the basis for the determination of the composition, which is found to differ somewhat from earlier results. The abundances found, especially the low value of helium and oxygen, indicate that the central star was originally of rather low mass, probably ≤1 M⊙. Abundances of phosphorus, iron, silicon, sodium, potassium and chlorine have been determined, some for the first time in this nebula. The electron temperature in this nebula is constant. The temperature, radius and luminosity of the central star is also discussed. It is shown that the luminosity is consistent with that predicted for a star of 0.9 M⊙. But the predicted nebular age is inconsistent with the observed kinetic age

    Abundances of Planetary Nebula NGC2392

    Get PDF
    The spectra of the planetary nebula NGC2392 is reanalysed using spectral measurements made in the mid-infrared with the Spitzer Space Telescope. The aim is to determine the chemical composition of this object. We also make use of IUE and ground based spectra. Abundances determined from the mid-infrared lines, which are insensitive to electron temperature, are used as the basis for the determination of the composition, which are found to differ somewhat from earlier results. The abundances found, especially the low value of helium and oxygen, indicate that the central star was originally of rather low mass. Abundances of phosphorus, iron, silicon and chlorine have been determined for the first time in this nebula. The variation of electron temperature in this nebula is very clear reaching quite high values close to the center. The temperature of the central star is discussed in the light of the high observed stages of ionization. The nebular information indicates the spectrum of the star deviates considerably from a blackbody.Comment: 9 pages, 7 tables, 3 figures. Accepted for publication in A&

    The Spitzer/IRS Infrared Spectrum and Abundances of the Planetary Nebula IC 2448

    Get PDF
    We present the mid-infrared spectrum of the planetary nebula IC 2448. In order to determine the chemical composition of the nebula, we use the infrared line fluxes from the Spitzer spectrum along with optical line fluxes from the literature and ultraviolet line fluxes from archival IUE spectra. We determine an extinction of C(H-beta) = 0.27 from hydrogen recombination lines and the radio to H-beta ratio. Forbidden line ratios give an electron density of 1860 cm-3 and an average electron temperature of 12700 K. The use of infrared lines allows us to determine more accurate abundances than previously possible because abundances derived from infrared lines do not vary greatly with the adopted electron temperature and extinction, and additional ionization stages are observed. Elements left mostly unchanged by stellar evolution (Ar, Ne, S, and O) all have subsolar values in IC 2448, indicating that the progenitor star formed out of moderately metal deficient material. Evidence from the Spitzer spectrum of IC 2448 supports previous claims that IC 2448 is an old nebula formed from a low mass progenitor star

    Abundances in planetary nebulae: NGC 2792

    Get PDF
    The mid-infrared spectrum of the rather circular planetary nebula NGC2792 taken with the Spitzer Space Telescope is presented. This spectrum is combined with the ultraviolet IUE spectrum and with the spectrum in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebula is then calculated in two ways. First by directly calculating and adding individual ion abundances, and secondly by building a model nebula that attempts to reproduce the observed spectrum. Because it is now possible to include the nebular temperature gradient, the chemical composition is more accurate than has been given earlier in the literature. Discussion of both the central star and the evolution of the star-nebula is then given

    Ammonia as a tracer of chemical equilibrium in the T7.5 dwarf Gliese 570D

    Full text link
    We present the first analysis of an optical to mid-infrared spectrum of the T7.5 dwarf Gliese 570D with model atmospheres, synthetic spectra, and brown dwarf evolution sequences. We obtain precise values for the basic parameters of Gl 570D: Teff=800 - 820K, log g (cm/s^2)=5.09 - 5.23, and log L/Lsun= -5.525 to -5.551. The Spitzer IRS spectrum shows prominent features of ammonia (NH3) that can only be fitted by reducing the abundance of NH3 by about one order of magnitude from the value obtained with chemical equilibrium models. We model departures from chemical equilibrium in the atmosphere of Gl 570D by considering the kinetics of nitrogen and carbon chemistry in the presence of vertical mixing. The resulting model spectrum reproduces the data very well.Comment: Accepted for publication in the ApJ. 10 pages, including 3 figure

    The NASA Spitzer Space Telescope

    Get PDF
    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991–2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/

    Moderate Resolution Spectroscopy For The Space Infrared Telescope Facility (SIRTF)

    Get PDF
    A conceptual design for an infrared spectrometer capable of both low resolution (λ/Δ-λ = 50; 2.5-200 microns) and moderate resolution (1000; 4-200 microns) and moderate resolution (1000; 4-200 microns) has been developed. This facility instrument will permit the spectroscopic study in the infrared of objects ranging from within the solar system to distant galaxies. The spectroscopic capability provided by this instrument for SIRTF will give astronomers orders of magnitude greater sensitivity for the study of faint objects than had been previously available. The low resolution mode will enable detailed studies of the continuum radiation. The moderate resolution mode of the instrument will permit studies of a wide range of problems, from the infrared spectral signatures of small outer solar system bodies such as Pluto and the satellites of the giant planets, to investigations of more luminous active galaxies and QS0s at substantially greater distances. A simple design concept has been developed for the spectrometer which supports the science investigation with practical cryogenic engineering. Operational flexibility is preserved with a minimum number of mechanisms. The five modules share a common aperture, and all gratings share a single scan mechanism. High reliability is achieved through use of flight-proven hardware concepts and redundancy. The design controls the heat load into the SIRTF cryogen, with all heat sources other than the detectors operating at 7K and isolated from the 4K cold station. Two-dimensional area detector arrays are used in the 2.5-120μm bands to simultaneously monitor adjacent regions in extended objects and to measure the background near point sources
    • …
    corecore